法拉第效應,名詞解釋法拉第磁光效應

1,名詞解釋法拉第磁光效應

法拉第磁光效應是指:一束線偏振光在磁場作用下通過磁光材料時它的偏振面將發生旋轉旋轉角θ正比于磁場沿著偏振光通過材料路徑的線積分θ=V·l式中V——材料的Verdet常數

名詞解釋法拉第磁光效應

2,法拉第發明了什么

【法拉第效應】 法拉第效應于1845年由M.法拉第發現。當線偏振光(見光的偏振)在介質中傳播時,若在平行于光的傳播方向上加一強磁場,則光振動方向將發生偏轉,偏轉角度ψ與磁感應強度B和光穿越介質的長度l的乘積成正比,即ψ=VBl,比例系數V稱為費爾德常數,與介質性質及光波頻率有關。偏轉方向取決于介質性質和磁場方向。上述現象稱為法拉第效應或磁致旋光效應。該效應可用來分析碳氫化合物,因每種碳氫化合物有各自的磁致旋光特性;法拉第效應于1845年由M.法拉第發現。當線偏振光(見光的偏振)在介質中傳播時,若在平行于光的傳播方向上加一強磁場,則光振動方向將發生偏轉,偏轉角度ψ與磁感應強度B和光穿越介質的長度l的乘積成正比,即ψ=VBl,比例系數V稱為費爾德常數,與介質性質及光波頻率有關。偏轉方向取決于介質性質和磁場方向。上述現象稱為法拉第效應或磁致旋光效應。該效應可用來分析碳氫化合物,因每種碳氫化合物有各自的磁致旋光特性;在光譜研究中,可借以得到關于激發能級的有關知識;在激光技術中可用來隔離反射光,也可作為調制光波的手段。
發電機

法拉第發明了什么

3,法拉第效應的簡介

磁光效應是光與具有磁矩的物質共同作用的產物。磁光效應主要有三種,即:法拉第效應、克爾效應、塞曼效應。在光學電流傳感器領域,法拉第磁光效應的應用最為廣泛。光學電流傳感器中磁光介質即磁光效應中具有磁矩的物質,是決定光學電流傳感器性能的重要器件。具有磁矩的物質可以分為五大類,而在光學電流傳感器領域,順磁性物質的應用最為廣泛。1845年,法拉第發現:當一束平面偏振光通過置于磁場中的磁光介質時,平面偏振光的偏振面就會隨著平行于光線方向的磁場發生旋轉。旋轉的這個角度稱之為法拉第旋轉角。 也稱磁致旋光。在處于磁場中的均勻各向同性媒質內,線偏振光束沿磁場方向傳播時,振動面發生旋轉的現象。1845年M.法拉第發現在強磁場中的玻璃產生這種效應,以后發現其他非旋光的固、液、氣態物質都有這種效應。設磁感應強度為B,光在物質中經過的路徑長度為d,則振動面轉動的角度為ψ=VBd, (1)式中V稱為費爾德常數,與物質的性質、溫度以及光的頻率(波長)有關。在一定物質中不論光是沿磁場方向或逆磁場方向傳播,振動面的轉向都一樣,只由磁場方向決定。若轉向與磁場方向成右手螺旋關系,該物質的V取為正值,即ψ>0。這樣,光來回傳播同樣距離后,其振動面的轉角等于單程轉角的兩倍。這是磁致旋光與天然旋光的區別(天然旋光情形,在來回傳播同樣距離后振動面恢復原來方位)。法拉第效應與塞曼效應有密切聯系。磁場影響物質分子(原子)中電子的運動,使無磁場時的一條吸收線對于平行于磁場方向傳播的入射光分裂為兩條,分別對應于右旋和左旋圓偏振光的吸收線,二者頻率略有不同(倒塞曼效應);而且對于這兩種圓偏振光又有分別對應的色散曲線。最簡單情形如圖a所示(面對磁場的指向觀察)。這時,物質對任一頻率的兩種圓偏振光有不同的折射率n+(左旋)和n_(右旋),從而入射的線偏振光的振動面在傳播中發生旋轉,轉角為(圖1)(2)圖b中畫出n_-n+的曲線。可以看出,圖中在吸收線之外ψ>0,而在吸收線之間ψ<0;在吸收線區域及其附近,ψ值很大。由于吸收線的裂距2Δω正比于B,在遠離吸收線區域n_-n+也近似正比于B,故有式(1)。天然旋光物質中發生磁致旋光現象時,應考慮上述兩種效應的疊加。鐵磁物質表現出很強的法拉第效應。這時ψ決定于物質中的磁化強度而不是外加磁場。

法拉第效應的簡介

推薦閱讀

喝完白酒第二天嗓子熱(喝完白酒第二天嗓子灼熱)
熱文